
Target Weight Market Maker: A Solution To IL And LVR

Artamonov Artemii
badconfig@edu.misis.ru

Jul 6, 2025

Abstract

Constant Function Automated Market Makers (CF-AMMs) are a cornerstone of decentral-
ized finance, yet they face inherent challenges such as Impermanent Loss (IL), Loss-Versus-
Rebalancing (LVR), and significant price impact on large trades.

This paper introduces the Target-Weight Market Maker (TWMM), a novel system that
utilizes external oracles to address these limitations. The TWMM reframes IL and LVR as
active asset management challenges, implementing a sophisticated, deviation-based fee model
that economically incentivizes the pool to maintain a target equilibrium.

Contents

1 Introduction 2

2 TWMM Description 3
2.1 Overview . 3
2.2 Fees . 3
2.3 Deviation: The Core Metric . 3
2.4 Fee Structure . 4
2.5 Fee Distribution . 4
2.6 Deviation Limit . 5
2.7 Deviation Fee . 5
2.8 Cashbacks . 7
2.9 Full TWMM swap invariant . 8
2.10 Liquidity Provision and Removal . 9
2.11 Multi-Asset Liquidity Invariant . 10

3 Rebalancing and Maintenance 11
3.1 Managing Asset weights . 11
3.2 Oracle Price Risk Mitigation . 11

4 TWMM efficiency 12
4.1 Comparing with CF-AMM . 12
4.2 Impermanent Loss Mitigation . 14

1

1 Introduction

At the time of this paper’s writing, on-chain liquidity provision predominantly relies on Constant
Function Automated Market Makers (CF-AMMs). The evolution of CF-AMMs led to the
concept of concentrated liquidity, where liquidity is supplied only within a specific price range.
This innovation significantly improves capital efficiency and offers enhanced tools for managing the
risks associated with Impermanent Loss (IL) and Loss-Versus-Rebalancing (LVR), as comprehen-
sively detailed in research from a16z and Columbia University[5].

Despite these advancements, market analysis indicates that even concentrated liquidity AMMs
(CL-AMMs) face substantial risks and present considerable management complexity. Statistics from
CrocSwap [1] reveal that only half of liquidity providers in the ETH/USDC trading pair—currently
the highest volume pair—experience positive returns. Furthermore, the majority of Profit and Loss
(PnL) outcomes are statistically clustered around zero, rendering liquidity provision a challenging
and high-risk endeavor.

Alternative solutions are emerging to optimize LVR and IL. These include approaches that
combine Request for Quote (RFQ) mechanisms with AMMs, such as those explored by Maverick
Protocol [4], or methods that minimize harmful trade impacts through trade batching, as imple-
mented by CoW Swap pools [2].

Another critical challenge in liquidity provision is the prevalence of paired on-chain liquidity,
which restricts volume acquisition and forces Liquidity Providers (LPs) to select optimal trading
pairs. Projects like Balancer [3] and Paradigm’s innovative approach [6] (an advanced iteration of
Curve Finance’s 3-pool) address this by introducing multi-dimensional curves. These innovations
enable the creation of pools that facilitate simultaneous trades across a basket of assets. Concep-
tually, they transition from a simple curve of f(x, y) = L to a more generalized form of f(X) = L,
where X = [x1, x2, . . . , xi] represents a vector of i assets.

The Target Weighted Market Maker (TWMM) system introduces an innovative approach
to on-chain market making, designed specifically to address these aforementioned challenges.

2

2 TWMM Description

2.1 Overview

Unlike traditional CF-AMMs, the TWMM reframes IL and LVR as asset management challenges,
akin to active trading strategies.

The TWMM system integrates a weighted portfolio strategy with an on-chain liquidity pool. It
facilitates the exchange of underlying assets using oracle-provided prices. These oracles are designed
to be LVR-aware, with their efficiency directly influenced by price volatility and the speed of their
technical implementation. A key distinction from CF-AMMs is that TWMM orders, whose prices
are determined by oracles, do not incur a price impact correlated with order quantity, thereby
mitigating the significant price impact observed in large trades on CF-AMMs.

TWMM introduces the concept of assets possessing target shares (St), which are denominated
in a quote asset’s value. In an ideal scenario, the share of each asset within the pool would
perpetually fluctuate around a predefined target. These shares continuously deviate from their
targets due to two primary factors: collateral rebalancing initiated by liquidity usage (trades) or
fluctuations in the market prices of the assets themselves. The mechanism that enables this share
rebalancing is an innovative fee model, which incentivizes the real-time share of each asset to
converge towards its predetermined target or ”ethalon” value.

2.2 Fees

The fee model is centered on a deviation metric that quantifies the difference between an asset’s
real-time share and its target share. As previously discussed, the current share (Sc) of an asset
can diverge from its target share due to market price fluctuations and trading activity. The current
share is calculated by dividing the asset’s total value by the pool’s Total Value Locked (TVL):

Sc =
R · P

Qlp · Plp
(1)

In this equation, the numerator R ·P is the asset’s total value (reserves multiplied by price). The
denominator, Rlp ·Plp, represents the TVL of the pool, which is calculated by multiplying the total
supply of LP tokens (their reserve Rlp) by the price of the LP token (Plp).

2.3 Deviation: The Core Metric

Deviation is the fundamental metric that quantifies the difference between an asset’s current share
and its target share. For a specific asset , its deviation value (D) indicates the degree to which
the asset is imbalanced relative to its target value within the TWMM pool. It is calculated as:

D = Sc − St (2)

Here, Sc and St are the current and target shares for asset, respectively. A negative deviation
value (D < 0) indicates a deficit of the asset in the pool, while a positive value (D > 0) signifies a
surplus.

With n representing the total number of assets, the deviation values adhere to two primary
invariants:

3

n∑
i=1

Di = 0,

n∑
i=1

|Di| = 2 · I (3)

The sum of all deviation values consistently equals zero. Concurrently, the sum of their absolute
values defines the total imbalance of the pool, which is equal to twice the pool’s aggregate imbalance
rate (I).

This quantitative understanding of deviation is crucial for the TWMM’s rebalancing mechanisms
and fee model, which are elaborated upon in subsequent sections. The precise management of these
deviations ensures the stability and efficiency of the system.

2.4 Fee Structure

Deviation plays a vital role in the fee structure of the TWMM. A fee is levied in the specific
asset whose pool quantity is altered by an operation. These fees can be broken down into several
components:

• Base Fee (Fb): A constant fee that is charged unconditionally on every operation.

• Depeg Fee (Fdv): This dynamic fee serves the dual purpose of generating revenue and creat-
ing an economic incentive to maintain the pool’s target allocations. It discourages operations
that would increase an asset’s imbalance by making them economically less appealing. The
fee is a function of the asset’s deviation before the operation (Do) and after the operation
(Dn). It is applied only when the absolute deviation of the asset increases as a result of the
operation (i.e., |Dn| > |Do|). Conversely, if an operation causes the absolute deviation to
decrease, this fee is waived.

• Cashbacks (Fcb): Functioning as the inverse of the depeg fee, cashbacks are rebates that
reward users for operations that reduce an asset’s imbalance. A cashback is issued when a
transaction moves an asset’s current share closer to its target share (i.e., when |Dnew| < |Dold|
and sgn(Dold) = sgn(Dnew)).

Synthesizing these individual components, the total effective fee (Ftotal) for any given operation
is defined by the following general formula, which combines the base fee (Fb), the deviation fee
(Fdv), and the cashback (Fcb):

Ftotal = Fb + Fdv − Fcb (4)

The core concept is to calibrate fees based on the resulting change in an asset’s deviation fol-
lowing a transaction. It is important to note that the TWMM architecture supports various
custom functions for calculating the deviation fee, enabling flexible and adaptable fee struc-
tures. Examples of such functions include linear or constant models, in addition to more complex
curve-based approaches.

2.5 Fee Distribution

Fees collected by the TWMM, excluding funds allocated for cashbacks, are distributed among three
distinct parties, with configurable percentage shares for each:

4

• LP token holders (liquidity providers)

• The pool owner or manager

• The protocol treasury

The distribution method varies by recipient. The share allocated to liquidity providers remains
in the pool, increasing the quantity of the underlying assets and thereby causing the value of their
LP tokens to appreciate.

Conversely, the shares designated for the pool owner and the protocol are distributed by minting
new LP tokens. If the total quote value of the fees collected for the owner and protocol is Vcol, the
quantity of new LP tokens to be minted (Qlpfee) is determined by the current LP token price (Plp):

Qlpfee =
Vcol

Plp
(5)

This minting mechanism ensures that fee distributions to the owner and protocol do not directly
withdraw assets from the pool. However, it is crucial to recognize that since fees are collected as
assets within the pool, their collection inherently alters the pool’s asset quantities. Consequently,
the impact of both collected fees and awarded cashbacks must be accounted for when calculating
the final deviation after a transaction.

2.6 Deviation Limit

The deviation limit is a control mechanism designed to restrict large-volume swaps that could
cause a severe imbalance in the pool’s asset composition.

An asset’s deviation can exceed this specified limit passively as a result of market price fluctu-
ations. When this occurs, transactions that reduce the asset’s deviation are permitted to proceed
normally, while any transaction that would further increase its absolute deviation is restricted.

Notably, a deviation fee may be waived even for trades that cause an asset’s deviation to change
sign (e.g., from a surplus to a deficit). The condition for this waiver is that the final absolute
deviation must be less than the initial absolute deviation. Such transactions, even if large, are
considered beneficial as they decrease the pool’s overall imbalance and move the portfolio closer to
its target equilibrium state (Inew < Iold) as described in deviation invariant 3.

2.7 Deviation Fee

To model the deviation fee, we first define two auxiliary components: the initial deviation before a
transaction and the change in deviation resulting from it.

First, the initial deviation (Dold) represents the asset’s deviation state immediately before a
swap. Consistent with Equation 2, it is defined using the asset’s reserve (R) in TWMM pool, its
price (P), its target share (St), and the pool’s Total Value Locked (Rlp · Plp):

Dold = St −
R · P

Rlp · Plp
(6)

Second, the change in deviation, ∆D, is a function of the change in the asset’s quantity, ∆Q,
resulting from the swap. It is calculated as:

∆D(∆Q) =
∆Q · P
Qlp · Plp

(7)

5

The deviation fee, Fdv, is modeled as a piecewise linear function. It applies a fee only if a
transaction increases the absolute deviation of the asset. The general form, parameterized by a
multiplier K and a constant B, is:

Fdv(∆D) =

{
K · |Dold +∆D|+B, if |Dold +∆D| > |Dold|,
0, otherwhise.

(8)

The illustration of this function is:

(a) Deviation function with B = 0 (b) Deviation function with B = −K|Dold|

Figure 1: Linear deviation functions

To refine the fee model, we first adjust the linear function from Equation 8. The previous form
results in a fee greater than B as soon as the deviation increases. To ensure the fee is exactly B
at the threshold where deviation begins to increase, and grows proportionally to the increase in
absolute deviation, the function is recalibrated as follows:

Fdv(∆D) =

{
K · (|Dold +∆D| − |Dold|) +B, if |Dold +∆D| > |Dold|,
0, otherwhise.

(9)

A further refinement is necessary to account for the recursive impact of the fee itself. The
collected fee alters the final input or output amount, which in turn influences the deviation value
used to calculate the fee. This self-referential dependency requires an implicitly defined function.
We introduce a parameter, deviation fee to cashback ratio (rd), which is related to the fee’s allocation
toward the cashback fund.

For an asset being added to the pool, the implicit fee function, FdIn, which accounts for the
portion of the fee retained by the pool, is:

FdIn(∆Din) = K · (|DoIn +∆Din · [1− rd · FdIn(∆Din)]| − |DoIn|) +B (10)

Here, the gross change in deviation, ∆Din, is adjusted by a factor dependent on the final fee itself.

6

Similarly, for an asset being withdrawn from the pool (the ”out” asset), a corresponding implicit
function, FdOut, is required to model the fee’s effect on the final withdrawal amount:

FdOut(∆Dout) = K · (|DoOut +∆Dout · [1 + rd · FdOut(∆Dout)]| − |DoOut|) +B (11)

2.8 Cashbacks

Cashbacks are financial incentives provided to users who execute trades that shift an underlying
asset’s share within the TWMM closer to its designated target share.

The cashback mechanism is funded by the deviation fees collected from prior operations that
increased the pool’s imbalance. These accumulated funds are then distributed to users whose
transactions reduce an asset’s deviation. The magnitude of the distributed cashback is directly
proportional to the extent of the deviation reduction. For instance, if a transaction reduces an
asset’s d The total accumulated fund available for cashback distribution for a given asset is denoted
by C. The specific cashback amount, Fcb, is calculated using the absolute deviation before the
operation, |Do|, and after the operation, |Dn|, as described by the formula:

Fcb =
(|Do| − |Dn|) · C

|Do| ·∆Q
(12)

A key design consideration is that this calculation is non-recursive. While the awarded cashback
could theoretically be redeposited and create a secondary impact on deviation, calculating this
effect recursively is avoided as it could create unstable feedback loops that overdistribute and
overincentivise trades. For this reason, the secondary impact is not considered.

Furthermore, to ensure stability and efficient value distribution, the cashback award is capped
by maximum cashback (Cmax) - a maximum ratio relative to the size of the user’s input quantity,
∆Q. General cashback function derived from 12 looks like:

Fcb(∆Q) =


min

(|Dold| −
∣∣Dold +∆D

∣∣
|Dold|

· C

∆Q
,Cmax

)
,

if |Dold +∆D| < |Dold|
and sgn(Dold) = sgn(Dnew),

0, otherwise.

(13)

The calculation of the cashback rate, denoted as Fcb, requires careful constraint to ensure it
properly incentivizes balancing the pool without creating instabilities. The models differ slightly
for assets being deposited versus assets being withdrawn.

Cashback for Input Asset (FcIn)

For an input asset (∆Qin > 0) that is reducing a deficit (DoIn < 0), the cashback must be
constrained to prevent the final deviation from overshooting past zero. To prevent the cashback
from causing the final deviation to cross zero, we introduce a second constraint, Cz. This value
represents the maximum cashback rate that results in a final deviation of exactly zero.

DoIn +∆Din · (1 + Cz) = 0 ⇐⇒ Cz = −
(

DoIn

∆Din
+ 1

)
(14)

FcIn(∆Qin) = min

(
|DoIn| − |DoIn +∆Din|

|DoIn|
· Cin

∆Qin
, Cmax, Cz

)
(15)

7

Under the specific condition that the transaction reduces the deficit but does not eliminate it
(i.e., DoIn +∆Din < 0), the formula can be simplified:

FcIn(∆Qin) = min

(
−∆Din

DoIn
· Cin

∆Qin
, Cmax, Cz

)
(16)

Combining these constraints yields the final piecewise function for the input asset cashback rate.
The rate is the minimum of the calculated proportional rate, the global maximum rate (Cmax), and
the zero-crossing rate (Cz). A cashback is only awarded if the transaction does not push the
deviation into a surplus.

FcIn(∆Qin) =

min

(
−∆Din

DoIn
· Cin

∆Qin
, Cmax,−

(
DoIn

∆Din
+ 1

))
, if DoIn +∆Din < 0,

0, otherwhise.
(17)

Cashback for Output Asset (FcOut)

The logic for an output asset that reduces a surplus (DoOut > 0) is symmetrical. The cashback is
drawn from the collected reserve Cout and does not create secondary deviation effects. The general
and simplified formulas are analogous to the input asset case:

FcOut(∆Qout) = min

(
|DoOut| − |DoOut −∆Dout|

|DoOut|
· Cout

|∆Qout|
, Cmax

)
(18)

Assuming the transaction reduces but does not eliminate the surplus (DoOut−∆Dout > 0), this
simplifies to:

FcOut(∆Qout) = min

(
∆Dout

DoOut
· Cout

|∆Qout|
, Cmax

)
(19)

The final function for the output asset cashback rate is therefore given as:

FcOut(∆Qout) =

min

(
∆Dout

DoOut
· Cout

|∆Qout|
, Cmax

)
, if DoOut −∆Dout > 0,

0, otherwhise.
(20)

2.9 Full TWMM swap invariant

The swap invariant defines the fundamental relationship between the amount of an asset deposited
into the pool (∆Qin) and the amount of another asset withdrawn (∆Qout). This relationship incor-
porates the asset prices (Pin, Pout), the respective base fees (FbIn, FbOut), and the net directional
fees (Fin, Fout), which represent the combined effect of deviation fees and cashbacks. The invariant
is expressed as:

∆Qin · Pin · (1− FbIn − Fin(∆Qin)) = ∆Qout · Pout · (1 + FbOut + Fout(∆Qout)) (21)

Because the base fee (Fbase) is retained in the form of the asset being transacted and thus affects
the pool’s deviation, its collection can be split between the input and output assets. We define these
user-configurable portions as FbIn and FbOut, which must adhere to the constraint:

Fbase = FbIn + FbOut (22)

8

The net directional fee terms, Fin and Fout, are composite values. They are derived by combining
the previously defined deviation fee functions (e.g., Equation 10) and cashback functions (e.g.,
Equation 17). Merging these components yields the final, comprehensive fee function used in the
swap invariant for the input asset:

Fin(∆Qin) =



−min
(∆Din

DoIn
· Cin

∆Qin
, Cm, −

(DoIn

∆Din
+ 1

))
, if DoIn +∆Din < 0,

K
(∣∣DoIn +∆Din

[
1− rd FIn(∆Din)

]∣∣
− |DoIn|

)
+B,

if DoIn +∆Din > |DoIn|,

0, otherwhise.

(23)

Following the same procedure, the net directional fee for the output asset, Fout, is derived by
combining the cashback and deviation fee functions applicable to asset withdrawals:

Fout(∆Qout) =



−min
(∆Dout

DoOut
· Cout

∆Qout
, Cmax

)
, if DoOut −∆Dout > 0,(∣∣DoOut +∆Dout

[
1 + rd FdOut(∆Dout)

]∣∣
− |DoOut|

)
·K +B,

if DoOut −∆Dout < −|DoOut|,

0, otherwise.

(24)

To execute a swap, a user must identify a pair of quantities, (∆Qin,∆Qout), that satisfies the
swap invariant defined in Equation 21. In practice, finding the optimal trade that maximizes the
output value for a given input may require iteratively solving this equation, a process that must
account for potential fluctuations in market prices during transaction construction.

2.10 Liquidity Provision and Removal

Liquidity provision and removal are the operations for depositing assets into the pool to mint LP
tokens, or burning LP tokens to withdraw underlying assets. Unlike swaps which exchange one
pool asset for another, these operations always involve a transaction between one or more pool
assets and the pool’s own LP tokens. This allows to apply less deviation impact for big amount of
liqudiity provision or removal

Because these operations alter the total supply of LP tokens (Qlp), the denominator of the
share calculation (i.e., the Total Value Locked) changes during the transaction itself. This requires
a redefinition of our deviation formulas (the deviation old formula (6) and deviation delta formula
(7)). For a liquidity operation involving a quantity ∆Q of a single asset and ∆Qlp of LP tokens,
we define the initial deviation and the change in deviation as follows:

Dold(∆Q,∆Qlp) = St −
R · P

Rlp · Plp
(25)

∆D(∆Q,∆Qlp) =
∆Q · P

∆Qlp · Plp
(26)

9

It is important to note that the LP token itself is not subject to deviation fees or cashbacks. As
a derivative representing a share of the entire pool, it is not considered a constituent asset with a
target share.

2.11 Multi-Asset Liquidity Invariant

While liquidity can be provided with a single asset, this action inherently unbalances the pool’s
composition, leading to a significant deviation impact and potentially high fees for the liquidity
provider. To mitigate this, the TWMM is designed to support multi-asset liquidity provision and
removal. By depositing or withdrawing assets in proportions that align with the pool’s target
shares, users can add or remove liquidity with minimal deviation impact and associated costs.

The relationship between the assets being transacted and the LP tokens is governed by the
following invariants. For minting LP tokens by depositing n assets, the invariant is:

n∑
i=1

(1− Fbase − Fin(∆Qin,∆Qlp))∆QinPin = ∆QlpPlp (27)

This equation states that the value of the minted LP tokens equals the sum of the net values of all
deposited assets after their respective fees are deducted.

Symmetrically, the invariant for burning LP tokens to withdraw n assets is:

∆QlpPlp =

n∑
o=1

(1 + Fbase + Fout(∆Qout,∆Qlp))∆QoutPout (28)

These liquidity operations can be integrated into a generalized invariant that holistically de-
scribes all possible interactions with the pool.

10

3 Rebalancing and Maintenance

The TWMM manages its assets by defining target shares for its constituent assets and facilitating
market-driven trades. These target shares can be adjusted dynamically or remain static over long
periods. However, the actual shares of assets within the pool inevitably fluctuate. This fluctuation
is driven by two primary factors: changes in the market prices of the assets and changes in their
quantities resulting from trading activity.

The system also supports the active maintenance of the asset portfolio, including the addition
or removal of assets as needed.

3.1 Managing Asset weights

To add a new asset to the pool, a non-zero target share is assigned to it. This action necessitates
a proportional reduction in the target shares of existing assets to maintain a total portfolio weight
of 100%. This immediately creates a significant negative deviation (a shortage) for the new asset,
especially if its target share is large. This state incentivizes users to supply the new asset to the
pool to reduce its deviation. Conversely, the deviation limit mechanism restricts withdrawals or
swaps that would further increase the asset’s shortage.

Conversely, removing an asset is achieved by setting its target share to zero. This action creates
a large positive deviation (a surplus) for that asset, incentivizing users to withdraw it from the
pool. Due to the deviation mechanism, the asset can effectively only be withdrawn. Any attempt
to deposit more of the asset would be blocked by the deviation limit, as it would exacerbate the
surplus.

3.2 Oracle Price Risk Mitigation

Oracle prices are subject to latency and potential inaccuracies, creating a discrepancy between the
on-chain price and the true market price. We can term this discrepancy the ”oracle error.” If this
error reaches a sufficient magnitude, it can create an arbitrage opportunity, allowing traders to
extract value from the pool.

The TWMM employs a multi-layered defense to mitigate this risk:

1. Base Fee: The base fee (Fbase) is the primary defense. By applying a fee to every trade, the
system establishes a profitability threshold for arbitragers. For an arbitrage to be profitable,
the oracle error must exceed the base fee.

2. Secondary Defenses: In scenarios where the oracle error does exceed the base fee, two
additional mechanisms protect the pool from significant capital drain:

• The Deviation Limit: This mechanism inherently caps the total amount of an asset
that can be swapped in a single direction, limiting the total value that can be extracted
via arbitrage.

• Deviation Fees: If the arbitrage trade increases the pool’s imbalance, progressively
higher deviation fees are applied, rapidly diminishing the profitability of the exploit.

These factors work in concert to significantly reduce the net profit of such arbitrage, especially
for large-scale exploits. This defense is most effective when the pool is near its target equilibrium.
While a large pre-existing deviation could alter the fee dynamics, the cashback system is designed

11

to incentivize continuous rebalancing, keeping the pool close to its target shares and thus ensuring
these protective mechanisms remain effective.

Ultimately, the most robust solution to oracle risk is to minimize the error in the first place.
Employing advanced techniques, such as MEV-aware oracle designs that provide the most recent
price atomically within a trade, is the preferred long-term strategy.

4 TWMM efficiency

4.1 Comparing with CF-AMM

For a CF-AMM with the invariant function x · y = L, the amount of output asset ∆y received for
a given input amount ∆x is calculated based on the initial reserves of the assets.

The formula, which accounts for a standard percentage trading fee, is:

∆y =
∆x · 997 ·Rin ·m · Pin

Pout

Rin ·m · 1000 + ∆x · 997 ·
√

Pin

Pout

(29)

To provide a clear performance benchmark, we will utilize a standard CF-AMM formula. This
formula calculates the output asset amount for a given input amount, including a 0.3% fee charged
on the input. To facilitate a direct comparison, the CF-AMM model is parameterized using prices
(Pin, Pout) and a liquidity level derived from the input asset’s reserve (Rin), mirroring the variables
used in the TWMM’s swap invariant.

We will now compare the trade execution of this CF-AMM against the TWMM across several
key scenarios. These include conditions with varying cashback reserves, near-zero deviation, and
significant initial deviation.

In the following charts, the performance is illustrated as follows:

• The red line represents the TWMM.

• The solid blue line represents the standard CF-AMM (m = 1).

• The dashed blue line represents a CF-AMM with tenfold liquidity, providing a bench-
mark for capital efficiency (m = 10).

• The Blue Zone highlights a fundamental constraint of the TWMM: the output amount
cannot exceed the total available reserve of the output asset (∆Qout ≤ Rout).

12

(a) Deviation hight on both assets (b) Cashback on one asset

Figure 2: Comparison in deviation cases

(a) Cashback on both assets (b) No cashbacks

Figure 3: Comparison in non deviation cases

The analysis demonstrates that the TWMM offers superior capital efficiency across a wide range
of trading scenarios. Excluding cases of extreme deviation—where the pool holds a severe surplus or
deficit of an asset—the TWMM’s performance is comparable to that of a standard CF-AMM with
as much as tenfold its TVL. This finding and ability to put multiple trading pairs into one TWMM
pool indicates a profound improvement in capital utilization, allowing the TWMM to facilitate
large trades with significantly less liquidity than traditional models.

13

4.2 Impermanent Loss Mitigation

In the context of CF-AMMs, impermanent loss represents the opportunity cost a liquidity provider
incurs compared to simply holding the assets in their wallet. While the TWMM does not eliminate
this risk, it provides powerful tools to actively manage and mitigate it by reframing liquidity
provision as a form of active portfolio management.

The key to this mitigation lies in the ability to dynamically adjust the target weights of the
assets within the pool. This flexibility enables several strategic possibilities that are unavailable in
static CF-AMMs:

• Fee Optimization: A pool manager can increase the target share of assets anticipated to
have high trading volume. This strategy aims to maximize fee generation, which can serve as
a direct offset against potential impermanent loss.

• Exposure and Risk Management: Conversely, a manager can reduce the target share
of a highly volatile asset. This allows the pool to maintain exposure to the asset’s potential
upside while minimizing the magnitude of impermanent loss caused by its price fluctuations.

Consequently, the TWMM LP token transcends its role as a simple claim on pooled assets.
It becomes a tokenized representation of a managed financial strategy. While this strategy may
not outperform every individual asset in the portfolio, it can be calibrated to offer a superior risk-
adjusted return profile, effectively serving as a more stable store of value compared to a passive
holding strategy.

Conclusion

The TWMM is a powerful system that successfully challenges current issues with on-chain decen-
tralized liquidity provision. The problem of impermanent loss is addressed through the ability
to actively manage asset shares, causing them to rebalance. This creates a new type of on-chain
derivative that represents a portfolio strategy.

The deviation fee model provides strong incentives to keep asset shares aligned with their target
values. Because the TWMM supports multiple assets in one pool, it also increases trading volume
capture from liquidity provision, which can be further optimized by adjusting asset weights to
provide deeper liquidity where needed.

The LVR problem is addressed as the TWMM uses frequently updated oracle prices, and the
pool shows significant advantages in capital efficiency over CF-AMMs.

The model has a potential bottleneck caused by oracle price inefficiencies. If oracle prices have
errors that overcome the collected fee value, an opportunity to drain the pool by extracting arbitrage
profit can appear (same mechanic as LVR). This, however, is more complicated if the pool is nearly
balanced, as additional volume would also involve deviation fees that grow proportionally with the
trade size and would counteract the profitability of exploiting the oracle error. Therefore, effective
oracles are key to the profitability of the TWMM.

14

References

[1] 0xfbifemboy. Impermanent loss and jit liquidity in the uniswap eth/usdc 0.3% pool. Medium,
2023. Accessed: 2025-07-05.

[2] Andrea Canidio and Robin Fritsch. Arbitrageurs’ profits, lvr, and sandwich attacks: batch
trading as an amm design response. arXiv preprint, 2025.

[3] Fernando Martinelli and Nikolai Mushegian. Balancer whitepaper, 2019.

[4] Maverick Protocol. Dynamic distribution amm: Technical introduction. Technical report, Mav-
erick Protocol, 2023.

[5] Jason Milionis, Ciamac C. Moallemi, Tim Roughgarden, and Anthony Lee Zhang. Automated
market making and loss-versus-rebalancing. arXiv:2208.06046v5 [q-fin.MF], 2024.

[6] Dave White, Dan Robinson, and Ciamac Moallemi. Orbital: An automated market maker for
multi-asset stablecoin pools. Whitepaper, Paradigm, Jun 2025. Accessed: 2025-07-05.

15

